Published Analytics
Romina’s Adult Beliefs about Math Teaching and Learning: “Everything Has Romina’s Definition to It”
This is Analytic 3 (of 3) of "Tracing Romina’s Growth In Reasoning And Sense-Making about Math Problems and Development of Beliefs about Math Teaching/Learning" This analytic explores Romina’s later adult views about learning mathematics in college and post-graduate studies and the development of her beliefs regarding the knowledge, conditions, and processes of mathematical learning. Through clinical and semi-structured interviews from 1999 to 2009 while she was in college, graduate more...
Examining Romina’s Growth in Reasoning and Collaboration in 10th & 12th Grades
This is Analytic 2 (of 3) of "Tracing Romina’s Growth In Reasoning And Sense-Making about Math Problems and Development of Beliefs about Math Teaching/Learning" This analytic examines the development of Romina’s problem-solving heuristics and examples of her behaviors in collaborative settings in tenth and twelfth grades. We watch Romina argue, make meaning, and generalize as she revisits the Tower Problem through an extension known as “Ankur’s Challenge.” Two years later, we more...
Tracing Romina’s Growth in Reasoning and Sense-Making in 4 th and 6 th Grades
This is Analytic 1 (of 3) of "Tracing Romina’s Growth In Reasoning And Sense-Making about Math Problems and Development of Beliefs about Math Teaching/Learning" This analytic traces the development of Romina’s problem-solving heuristics and examines examples of her behaviors in collaborative settings from fourth and sixth grades. Specifically, we examine video data from February 6, 1992 when Romina was in 4 th grade and working with a partner during her first exposure to the Towers more...
Revealing Structural Similarity Among Problems Through Pascal’s Triangle
This is Analytic 4 (of 4) of "Last steps to the ’Aha!’ - Recognizing the Isomorphism: A Series of Four Analytics" This Analytic represents the culmination of the students’ exploration into combinatorial reasoning, where they uncover and articulate the structural similarities between and among the various counting problems whose solutions were structurally equivalent. This Analytic centers on the students’ synthesis of their understanding of Pascal’s Triangle with their experiences in more...
Understanding Pascal’s Addition Property and Counting Pizza Combinations
This is Analytic 3 (of 4) of "Last steps to the ’Aha!’ - Recognizing the Isomorphism: A Series of Four Analytics" This Analytic examines the students’ continued mathematical journey as they unravel the connections between the combinatorial problems they have been solving and the addition property inherent in Pascal’s Triangle. Specifically, the students apply their understanding of pizza topping combinations to grasp the addition principle that allows Pascal’s Triangle to grow - each more...
Connecting Pizzas to Pascal’s Triangle
This is Analytic 2 (of 4) of "Last steps to the ’Aha!’ - Recognizing the Isomorphism: A Series of Four Analytics" In this second of four Analytics, Shelly, Stephanie, Amy-Lynn, and Robert delve deeper into the combinatorial reasoning that has emerged through their mathematical explorations. The 4-Topping Pizza Problem serves as a gateway to discovering the inherent patterns of Pascal’s Triangle within their combinatorial framework. This Analytic documents the critical transition from more...
Last steps to the “Aha!” - recognizing the isomorphism
This is Analytic 1 (of 4) of "Last steps to the ’Aha!’ - Recognizing the Isomorphism: A Series of Four Analytics" This first Analytic marks a significant step in the mathematical explorations of Shelly, Stephanie, Amy-Lynn, and Robert. The students draw upon their rich history of combinatorial reasoning as they continue to delve into the 4-Topping Pizza Problem. At this juncture, they continue to lay groundwork for uncovering the isomorphic relationships connecting solutions to Pizza and more...
Student Use of Mathematics Discourse during the Taxicab Problem
This analytic explores how the four twelfth grade students (Michael, Romina, Brian, and Jeff) used mathematics discourse throughout their problem-solving process of the Taxicab problem. Mathematical discourse refers to the way in which students talk, write, and reason about mathematics, including the use of language, symbols, representations, and practices. While acknowledging that discourse does not only refer to language, the mathematics register can be used to characterize mathematical more...
Tracing Justina’s Argument of Fairness: Investigating a Journey of Probabilistic Reasoning
The purpose of this analytic is to examine the development of probabilistic reasoning and representations shown by Justina, a sixth-grade student, when working with Adanna, a sixth-grade student, on both dice games (see problem statements below). The video narrative is a compilation of events that documents Justina’s reasoning on what makes the dice games fair as well as the representations that she used to support her argument. The first event showcases the structure and format of dice game more...
This analytic examines researcher Ralph Pantozzi’s questioning style when posing open-ended tasks to students. This analysis focuses on three female students: Romina, Magda, and Angela, who were former AP Calculus students of Researcher Pantozzi’s and at the time of the observed sessions were juniors in college, over the course of two sessions. The first session took place on June 25, 2003 and the second session occurred on July 24, 2003. Both sessions showcased evolving thoughts and more...
Chris and Jerel’s Initial Idea of Fairness in Ordinary Dice Games (Part 3 of 3)
This analytic is the third of three analytics that showcase the formulation of two students’ ideas of mathematical fairness. The analytics follow the argumentation of two students, Chris and Jerel, throughout two after-school sessions and one interview session as they investigate what makes a game involving rolling one or two dice fair. The first after-school session occurred on April 29, 2004. The second after-school session occurred on May 5, 2004, with the interview happening directly more...
Chris and Jerel’s Initial Idea of Fairness in Ordinary Dice Games (Part 2 of 3)
This analytic is the second of three analytics that showcase the formulation of two students’ ideas of mathematical fairness. The analytics follow the argumentation of two students, Chris and Jerel, throughout two after-school sessions and one interview session as they investigate what makes a game involving rolling one or two dice fair. The first after-school session occurred on April 29, 2004. The second after-school session occurred on May 5, 2004, with the interview happening more...
Chris and Jerel’s Initial Idea of Fairness in Ordinary Dice Games (Part 1 of 3)
This analytic is the first of three analytics that showcase the formulation of two students’ ideas of mathematical fairness. The analytics follow the argumentation of two students, Chris and Jerel, throughout two after-school sessions and one interview session as they investigate what makes a game involving rolling one or two dice fair. The first after-school session occurred on April 29, 2004. The second after-school session occurred on May 5, 2004, with the interview happening directly more...
Stephanie and Dana: Third Graders Explore Counting Problems
This analytic illustrates how third-graders, Stephanie and Dana, justify their solutions to counting problems, displaying different representations to justify the number of different outfits that could be created with a certain number of shirts and pants available. In this analytic, notice that the girls use words, pictures, and diagrams to justify their solutions. Notice also, that they predict a solution with more articles of clothing, suggesting recognition of a pattern. Stephanie and more...
Collaboration Allows For The Development Student Understanding and Reasoning
This analytic examines how collaboration between students can lead to deeper understanding and support student reasoning. Reasoning in mathematics can take many forms and has varying definitions in the mathematics education community (Van Ness, 2017). Regardless, major authorities on mathematics education, such as the NCTM, all see reasoning as essential to mathematical learning and development. As students deepen their understanding of mathematical content, their ability to justify their more...
Argumentation and Collaboration to Promote Discovery
Students can discover the principles of probability through collaboration as argumentation. This analytic focuses on a group of sixth-grade students as they take a simple dice game with inherent probability properties and reason through the process with argumentation. The game: Roll two dice. If the sum of the two is 2, 3, 4, 10, 11, or 12, player A gets 1 point. If the sum is 5, 6, 7, 8, or 9, player B gets 1 point. The first player to get 10 points is the winner. Before playing the game, more...
Collaborative Problem Solving and Communication
Students use communication in mathematics to link ideas, communicate their ideas to their classmates and teachers, problem solve, analyze the mathematical thinking of others, and express their mathematical ideas (Rohid, et al, 2019). Students are able to communicate effectively, understand ideas, reason, and present mathematical ideas when given the opportunity. Inviting students to communicate mathematically deepens understanding of mathematics, deepens reasoning, and supports mathematical more...
High School Juniors’ Probabilistic Reasoning in Solving the World Series Task
The World Series is the annual championship series of Major League Baseball (MLB) to determine that season’s MLB champion. It dates back to 1903, and there has been a World Series every year since except for 1904 (boycott) and 1994 (strike). The format of the World Series is that the first team to win four games of the series wins the World Series. This format is called “best-of-seven,” since it takes a maximum of seven games for one team to win four games. There were four World Series more...
Introducing Open Sentences in Two Variables
This VMCAnalytic was created to explore interesting ways to introduce new algebraic concepts to students. "Open Sentences in Two Variables" is a basic topic in Algebra, but it is one that students might not grasp right away when being new to the subject. In the following clips, Researcher Davis introduces algebraic equations with two variables using shapes as symbols to represent the two variables. In conclusion, different variables are allowed to represent the same number. One variable more...
Progression of Reasoning in Math Through Dice Games
This VMCAnalytic explores the progression of reasoning in Math used by a group of 6th-grade students as they work on dice game problems. The students are asked to decide whether or not a game in which points are given based on the sum of the numbers shown when two dice are rolled is fair. If is not fair, meaning the players have an unequal chance of winning, the students are to discern which player has the advantage, as well as how the game could be changed so that the players do have an equal more...
Sixth Graders’ Reasoning and Pattern Detection in Solving the Tower of Hanoi Puzzle
The Tower of Hanoi Puzzle is a fascinating mathematical puzzle invented by the French mathematician François Édouard Anatole Lucas in 1883 (the same Lucas after whom the Lucas Sequence, which works just like the Fibonacci Sequence with initial conditions 2 and 1, is named). It consists of three pegs and a set of circular disks of different sizes, each with a hole in the middle. There are two simple rules for moving the disks from one peg to another: 1. Only one disk may be moved at a time. more...
Guess My Rule and Discovery of the Properties of Linear Equations
This VMCAnalytic was created as the fourth “video story” in a set of four. The four VMCAnalytics were used as the central tool of professional development in the Teachers Algebra Workshop (TAW), August, 2016. The TAW was created for a study that examined the use of video stories in the professional development of algebra teachers of minority students with low socio-economic status (Leslie, 2019). In this study, teacher participants’ responses to this video story were audio-recorded. more...
Guess My Rule for The Ladder Problem Creates an Algebra Adventure
This VMCAnalytic was created as the third “video story” in a set of four. The four VMCAnalytics were used as the central tool of professional development in the Teachers Algebra Workshop (TAW), August, 2016. The TAW was created for a study that examined the use of video stories in the professional development of algebra teachers of minority students with low socio-economic status (Leslie, 2019). In this study, teacher participants’ responses to this video story were audio-recorded. more...
The focus of this analytic is twofold. First, it is to examine Researcher Davis’s deliberate teaching moves that promote students to build on their ideas to solve the Tower of Hanoi(TOH) problem. Second, it is to trace the collaborative problem solving of a class of sixth graders. Maher and Weber (2010) suggest that opportunities be given to learners to express their own ideas and represent them in multiple ways in the context of a collaborative, supportive environment. Children, naturally, more...
Purpose/Focus: The focus of this analytic is to examine how students develop, evolve, and adopt representations and strategies while working in a group on the taxicab problem. We will keep a close eye on how students identify and manipulate the underlying structure of the taxicab problem. In this analytic we see students use their ideas about previous tasks such as the pizza and the towers problem to make sense of the taxicab problem. The taxicab problem has an underlying structure and to see more...
Guess My Rule Creates Common Cognitive Challenges for Yonny and Brandon, Ariel and James
This VMCAnalytic was created as the second “video story” in a set of four. The four VMCAnalytics were used as the central tool of professional development in the Teachers Algebra Workshop (TAW), August, 2016. The TAW was created for a study that examined the use of video stories in the professional development of algebra teachers of minority students with low socio-economic status (Leslie, 2019). In this study, teacher participants’ responses to this video story were audio-recorded. more...
Guess My Rule Engages Students in Algebra
This Analytic was created for a professional development workshop for algebra teachers. This Analytic was created as the first “video story” in a set of four; these Analytics were used as the central tool of professional development in the Teachers Algebra Workshop (TAW), August, 2016. The TAW was created for a study that examined the use of video stories in the professional development of algebra teachers of minority students with low socio-economic status (Leslie, 2019). In this more...
Task Statement: Pizza selecting from 4 different toppings. Students may revise and enhance their solutions and representations when they are observed working on well-defined problem tasks, given opportunities to speak about their ideas, build models to represent ideas, and have opportunities to receive input of their ideas from others. You will see Brandon revise his guess and check method and use organization by case to build towers 4-tall using 2 different color cubes. Teacher intervention more...
This session was recorded in the first two days during which a group of students explore the concepts of surface area and volume. On camera there are four students; Brian, Michael, Romina, and Michelle. These events display the use of student’s mathematical language as they progress throughout the session while working on problems of surface area and volume. The mathematical language that students use include; units of surface area, units of volume, the discussion of formulas for both surface more...
Romina, a College Junior, Revisits the Fundamental Theorem of Calculus
The objective of this analytic is to examine the contributions made specifically by Romina and observe her methods of reasoning and rationale in relationship to the group discussions and outcomes from the proposed task. This analytic focuses on a session occurring on June 25, 2003 that highlighted the development of the explanation of the Fundamental Theorem of Calculus through the eyes of a group of three female third-year college students, Romina, Magda, and Angela. The students (3 years more...
James’ Recognition of the Isomorphism Between the Museum Problem and the Ladder Problem
This analytic focuses on James, a seventh-grade student, working on a problem solving activity involving linear functions to help him recognize an isomorphic relationship between problems. The goal of recognizing this isomorphism is to help him draw connections between the problems, gain a deeper understanding of the concept, and generalize his findings. Before this series of video clips, James worked on the ladder problem which asks to find the number of blocks needed to build a ladder with more...
Eleventh Graders Explore Solution to the World Series Problem
Romina, Ankur, Brian, Jeff and Michael are eleventh graders collaborating on the World Series Problem. The problem requires that in order for a team to win the “World Series” a team must win at least four, and at most, seven games. The students experience several breakthroughs throughout the development of their understanding of the problem and the solution. In the end, they begin extending their understanding of the problem by drawing on the structural connection between the World Series more...
Using Isomorphism to Derive Pascal’s Identity
This session begins with Jeff, Michael and Romina discussing the binomial expansion. Michael remembers that finding the coefficients for binomial expansion relates to n choose r. This prompts Romina to remind Michael that n choose r was what the students had learned with the towers problem. Michael concludes this connection explaining that each term of the binomial relates to the colors that are being chosen from in the towers problem. Thus, finding the coefficient of the third term of (a+b)^10 more...
Author: Victoria Krupnik, Rutgers University Overall Description This analytic is the third of three analytics that showcase the problem solving of a counting task by a student, Michelle, over two school years. The analytics focus on the development of reasoning, argumentation, and mathematical representations constructed by Michelle in a variety of settings, over time, in the fourth (Parts 1 & 2) and fifth (Part 3) grades. The first analytic begins with Michelle working with a partner, in a more...
Author: Victoria Krupnik, Rutgers University Overall Description This analytic is the second of three analytics that showcase the problem solving of a counting task by a student, Michelle, over two school years. The analytics focus on the development of reasoning, argumentation, and mathematical representations constructed by Michelle in a variety of settings, over time, in the fourth (Parts 1 & 2) and fifth (Part 3) grades. The first analytic begins with Michelle working with a partner, in a more...
Author: Victoria Krupnik, Rutgers University Overall Description This analytic is the first of three analytics that showcase the problem solving of a counting task by a student, Michelle, over two school years. The analytics focus on the development of reasoning, argumentation, and mathematical representations constructed by Michelle in a variety of settings, over time, in the fourth (Parts 1 & 2) and fifth (Part 3) grades. The first analytic begins with Michelle working with a partner, in a more...
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the third of three analytics that showcase Stephanie’s development of an argument by induction to solve a counting task over three school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings over time, in the third (Part 1), fourth (Parts 1 and 2), and fifth grades (Part 3). The first analytic begins with more...
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the second of three analytics that showcase Stephanie’s development of an argument by induction to solve a counting task over three school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings over time, in the third (Part 1), fourth (Parts 1 and 2), and fifth grades (Part 3). The first analytic begins more...
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the first of three analytics that showcase Stephanie’s development of an argument by induction to solve a counting task over three school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings, over time, in the third (Part 1), fourth (Parts 1 and 2), and fifth grades (Part 3). The first analytic begins with more...
Stephanie’s Development of Reasoning by Cases to Solve Tower Tasks: Part 3 of 3 (Grade 4)
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the third of three analytics that showcase Stephanie’s development of an argument by cases to solve a counting task over two school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings, over time, in third (Part 1) and fourth (Parts 1, 2, and 3) grades. The first analytic begins with Stephanie working more...
Stephanie’s Development of Reasoning by Cases to Solve Tower Tasks: Part 2 of 3 (Grade 4)
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the second of three analytics that showcase Stephanie’s development of an argument by cases to solve a counting task over two school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings, over time, in third (Part 1) and fourth (Parts 1, 2, and 3) grades. The first analytic begins with Stephanie working more...
Stephanie’s Development of Reasoning by Cases to Solve Tower Tasks: Part 1 of 3 (Grades 3 & 4)
Author Victoria Krupnik (Rutgers University - graduate) Overall Description This analytic is the first of three analytics that showcase Stephanie’s development of an argument by cases to solve a counting task over two school years. The three analytics focus on the reasoning, argumentation, and mathematical representations constructed by Stephanie in a variety of settings, over time, in third (Part 1) and fourth (Parts 1, 2, and 3) grades. The first analytic begins with Stephanie working more...
Author: Victoria Krupnik, Rutgers University This analytic is the second of two analytics that showcase the development of an argument by induction to solve a counting task by a student, Milin, over two school years. Both analytics focus on the reasoning, argumentation, and mathematical representations constructed by Milin in a variety of settings over time, in the fourth (Parts 1 and 2) and fifth (Part 2) grades. The first analytic includes events where Milin is working in a one-on-one more...
Author: Victoria Krupnik, Rutgers University This analytic is the first of two analytics that showcase the development of an argument by induction to solve a counting task by a student, Milin, over two school years. Both analytics focus on the reasoning, argumentation, and mathematical representations constructed by Milin in a variety of settings, over time, in the fourth (Parts 1 and 2) and fifth (Part 2) grades. The first analytic includes events where Milin is working in a one-on-one more...
Milin’s Learning Progression in Reasoning by Cases to Solve Tower Tasks: Part 2 of 2 (Grade 4)
Author: Victoria Krupnik, Rutgers University This analytic is the second of two analytics that showcase the development of a variation of reasoning by cases to solve a counting task by a student, Milin, over one school year in fourth grade. Both analytics focus on the reasoning, argumentation, and mathematical representations constructed by Milin in a variety of settings, over time, in the fourth grade. The first analytic begins with events where Milin is working with a partner, in a whole more...
Milin’s Learning Progression in Reasoning by Cases to Solve Tower Tasks: Part 1 of 2 (Grade 4)
Author: Victoria Krupnik, Rutgers University This analytic is the first of two analytics that showcase the development of reasoning by cases to solve a counting task by a student, Milin, over one school year. Both analytics focus on the reasoning, argumentation, and mathematical representations constructed by Milin in a variety of settings, over time, in the fourth grade. The first analytic begins with events where Milin is working with a partner, in a whole class setting, building towers more...
Authors: Jianene Meola, Christian Orr-Woods In her 2007 dissertation, Mayansky conducted a study of Robert B. Davis’ pedagogy, drawing on data from Davis’ own writing and video footage of his teaching. Her goal was to gain a deeper insight into the philosophies of a renowned mathematics educator and engaging mathematics teacher, to see how his classroom practices connected to his views about teaching mathematics, and to identify what student outcomes could be associated with those more...
During a two-week Summer Institute, occurring after the completion of 11th grade, a group of students work together to solve the Catwalk Problem. From a sequence of 24 pictures of a cat in motion, students were challenged to find the speed of the cat in frame 10 and frame 20. “The pictures, photographed by E. Muybridge (1830-1904), were taken in time intervals of 0.031 seconds against a backdrop of 5-centimeter lines, where every 10th line was heavy” (Halien, 2011, p. 1-2). In this more...
By Usufu Nyakoojo and Victoria Krupnik This analytic focuses on the reasoning, argumentation, and mathematical representations showcased by four, fourth-grade students (Jeff, Michelle, Milin, and Stephanie). Explanations of solutions for finding all possible towers, 3-cubes tall when selecting from two colors, are offered by Milin and Stephanie, with input and questioning from other group members. The events of this analytic are retrieved from a small-group assessment interview (Gang of more...
Beginning to Understand Linear Functions: Guess My Rule
The purpose of this analytic is to show how mathematics learning occurs when children are encouraged to "create their own way of understanding" [RB Davis, 1992]. The patience and guidance exhibited by Teacher/Researcher in this analytic is a pedagogic model for teachers. The way the students explore and struggle with the first "guess my rule question", and the way they explore with success that excites them on the second problem, provide a rich model of student math learning. This analytic more...
Taxicab via Pascal’s Triangle to Towers: Building Isomorphisms to Justify.
Four high-school seniors – Brian, Jeff, Mike, and Romina are engaged in a challenging problem-solving experience with a combinatorics task referred to as The Taxicab Problem. To understand and solve the Taxicab Problem, the group developed a mediated isomorphism, connecting with rows of Pascal’s Triangle and the structure of the previously solved Towers Problems. The students are in their last year of high school and are demonstrating applications of knowledge and ways of reasoning that more...
Fourth Graders Offer Different Arguments Using Cuisenaire Rods as Models for Fraction Problems.
This analytic shows the different mathematics understanding of 4th grade students. They stated different arguments about what rod would have the number name one half when the blue rod is called one. There are some different assumptions and structures of the students’ arguments that offer different forms of reasoning. Their arguments contain very important elements, which students have to practice. According to several publications, argumentation is an important mathematical practice for the more...
This analytic presents a task-based interview with Stephanie, an eighth- grade student, about her understanding of the meaning of the square of a binomial. Stephanie uses both algebraic and geometric reasoning to explain her reasoning and support her arguments. Van Ness, (2017) writes, “The literature on argumentation supports the notion that argumentation and reasoning are inextricably linked, and it is difficult to discuss argumentation without also talking about reasoning”. The more...
Stephanie’s use of geometric reasoning to explain binomial expansion.
In this interview session Stephanie is asked by Researcher Maher about what (a+b) squared means. She makes a claim that it is the same as (a squared) + (b squared). She carries out a test of testing her claim by substituting a and b with numbers and establishes that the two are not equivalent. This sets the stage for exploring the meaning of (a+b) squared. Sometimes teachers will ignore a wrong answer or correct a student who offers an incorrect answer. We see in this interview Researcher Maher more...
Students find challenges in interpreting and working with fractions. Many concepts, such as equivalent fractions, difference between fractions, and sums of fractions do not seem to make sense to them, and these topics are approached with a lot of difficulty and abstractness. This is in part due to the abstract introduction and development of concepts in fractions (teaching without models and teaching aids, rules without meaning, etc.). For many students, fractions (as a topic) are not looked more...
In a traditional classroom setting, often the teacher is the head of the student body, orchestrating the conversation and sporadically incorporating the voice of the students in a teacher-to-student conversation. In a setting that is more collaborative and student-centered, students lead the discussion and converse with one another. This creates an environment where every student has a greater opportunity to an opinion, demonstrating that each student’s voice has value. Research has shown more...
Tracing Stephanie’s Growth in Mathematical Understanding through Researcher Moves
This analytic demonstrates effective researcher moves that promote student growth in mathematical understanding. This analytic shows students learning math in different sessions, engaging in the Shirts and Pants Tasks and different versions of the Towers Problem. The researcher moves promote mathematical argumentation, justification of solutions, and providing reasoning for candidate solutions and solution methods. The analytic shows the researchers engaging in effective questioning more...
Tracing Stephanie’s Growth in Image Having through the Pirie-Kieren Lense
In this analytic, we observe Stephanie’s growth in mathematical understanding as image having using the Pirie-Kieren model. Instances of Stephanie’s growth in learning in the image having layer of the Pirie-Kieren model demonstrates what “image having” looks like. This one-on-one task-based interview takes place between Stephanie and Researcher Maher. Stephanie is exploring the Five-Tall Towers problem, a task that she engaged in with classmates the previous day. more...
Tracing Stephanie’s Growth in Primitive Knowing through the Pirie-Kieren lense
In this analytic, the innermost layers of the Pirie-Kieren model for studying growth in mathematical understanding are demonstrated in Stephanie and her classmates’ first exploration of the Towers more...
Tracing Stephanie’s Growth in Image Making through the Pirie-Kieren Lense
In this analytic, Stephanie’s growth in mathematical understanding is presented as she learns in the image making layer of the Pirie-Kieren model for studying the growth in mathematical understanding. Attention is paid to Stephanie’s exploration of the Shirts and Pants task in third grade, and Stephanie’s exploration of the towers problem, building towers of certain heights while selecting form two colors of cubes. Stephanie builds images as she learns by creating picture diagrams and more...
Tracing Stephanie’s Growth in Property Noticing through the Pirie-Kieren Lense
In this analytic, we look at instances of Stephanie learning in the property noticing layer of the Pirie-Kieren model. In the first clip, Stephanie identifies similar characteristics between the Towers problem and the Shirts and Pants problems and explores what the outfit problem context means in the one-tall, two-tall, and three-tall towers. In the second clip, Stephanie works with other students to discuss and develop a rule for figuring out how many towers can be created for different more...
This analytic explores Stephanie’s growth in mathematical understanding during a 98-minute one-on-one interview session with Researcher Maher. Stephanie’s learning progression is mapped from primitive knowing to formalizing using the Pirie-Kieren model for studying growth in mathematical understanding over time. Previously, Stephanie had worked on the four-tall towers problem, and developed a new method using cases to partially solve the six-tall towers problem. Stephanie describes more...
Fraction Assessment Analytic 1: Fourth Graders’ Argumentation about the Comparison of 1/2 and 1/3
The events depicted in this analytic were taken from a larger data set gathered as a result of a year-long research intervention involving fourth graders’ exploration of fractions. The events depicted here occurred on September 29, 1993 and are taken from the first month of the intervention during the fifth session. (For a detailed analysis of the student reasoning during this intervention, see Maher & Yankelewitz, 2017; Yankelewitz, 2009). The students’ investigations in this VMCAnalytic more...
The development of students’ conceptual knowledge through modelling fractions.
In the 21st century, there is a significant change in mathematics education. There is a focus on the conceptual teaching of mathematics that has replaced the procedural teaching methodology. Currently, teachers employ the use of mathematical activities and tasks to help students discover new ideas on their own. Research has shown that students in a conceptually oriented mathematics class outperform students in a procedural oriented mathematics class on tests and on measures of attitude towards more...
This analytic is the third in a series of analytics that describes teacher questioning and student responses and reasoning so that researchers, teachers and teacher educators can study patterns of teacher questioning techniques and responses from students. Research reveals the importance of effective teacher questioning and highlights the role that such questioning plays in the development of students’ mathematical reasoning (Klinzing, Klinzing-Eurich & Tisher, 1985; Martino & Maher, 1999). more...
This analytic is the second in a series of analytics that describes teacher questioning and student responses and reasoning so that researchers, teachers and teacher educators can study patterns of teacher questioning techniques and responses from students. Research reveals the importance of effective teacher questioning and highlights the role that such questioning plays in the development of students’ mathematical reasoning (Klinzing, Klinzing-Eurich & Tisher, 1985; Martino & Maher, 1999). more...
This analytic is the fifth in a series of analytics that describes teacher questioning and student responses and reasoning so that researchers, teachers and teacher educators can study patterns of teacher questioning techniques in relation to responses from students. Research reveals the importance of effective teacher questioning and highlights the role that such questioning plays in the development of students’ mathematical reasoning (Klinzing, Klinzing-Eurich & Tisher, 1985; Martino & more...
This analytic is the fourth in a series of analytics that describes teacher questioning and student responses and reasoning so that researchers, teachers and teacher educators can study patterns of teacher questioning techniques and responses from students. Research reveals the importance of effective teacher questioning and highlights the role that such questioning plays in the development of students’ mathematical reasoning (Klinzing, Klinzing-Eurich & Tisher, 1985; Martino & Maher, more...
The first, in a series of five analytics, describes teacher questioning, and students’ responses and points out the reasoning of the students so that researchers, teachers, and teacher educators can study patterns of teacher questioning techniques and responses from their students. Research reveals the importance of effective teacher questioning and highlights the role that such questioning plays in the development of students’ mathematical reasoning (Klinzing, Klinzing-Eurich & Tisher, more...
Sixth- Graders Exploring Probability Principles through Dice Games
Maher and Martino (1996) noted that students, when presented with a problem task in a small-group setting, begin by constructing personal representations of the problem or, in attempting to do so, discover that they cannot. After students have attempted to build personal representations, they frequently initiate conversation with others and compare their ideas. This analytic focuses on the representations and reasoning used by the sixth-grade students (Stephanie, Ankur, Brian, Milin, Jeff, more...
4th Graders Journey to Division of Fractions
Working with fractions is consistently a challenge for both younger and older students. Specifically, understanding the operation of division may be harder for younger students, who could be asked to imagine splitting a piece of something into yet smaller pieces. Unfortunately, the idea of division is often introduced to students as a rule of multiplying the initial value (numerator) by the reciprocal of the second value (denominator) in the number sentence, without understanding. In the more...
Author: Victoria Krupnik As educators and researchers, we frequently notice students’ struggles when they first encounter higher-order mathematical thinking, such as providing precise and convincing arguments for non-routine and challenging problems and developing formal, mathematical proofs. This occurs for several reasons, including, but not limited to, the following: 1. Math reasoning and argumentation requires more precision in its definitions and assumptions than is usually present more...
The Museum Problem: Seventh grader Ariel investigates linear functions
This RUAnalytic concentrates on a 7th grade boy, Ariel, in an urban middle school. Ariel, a volunteer in an after-school Informal Math Program, is introduced to the idea of linear functions. During this after school enrichment session, Ariel is presented with the Museum Problem. The Museum Problem states: A museum gift shop is having a craft sale. The entrance fee is $2. Once inside, there is a special discount tale where each craft piece costs $3. What would be the total amount that you more...
The Candy Bar Problem: Researcher Moves to Encourage 4th Grades Reasoning About Fractions
The students use Cuisenaire Rods to develop relational understanding (Skemp, 1978) of finding the difference of two fractions and explore, informally, comparison problems with fractions, developing an understanding of least common multiple. Students work on the following problems, “If we agree that the 8 students who received 1 and 1/4 pieces of candy got more than the 9 students who received 1 and 1/9 pieces, how much more did each of the students in the group of 8 receive? How much more...
Small Group and Whole Class Collaboration about Fractional Relationships Using Rod Models
This analytic is designed to show various forms of collaboration, which includes co-construction, integration, and modification, through small group and whole class discussions. Further, this analytic delves into how these three aspects of collaboration contribute to student’s understandings of the problems at hand. According to Elizabeth Uptegrove in her article “Shared communication in building mathematical ideas: A longitudinal study” (2015), “students build knowledge collaboratively more...
Greer and Harel (1998) state that: "We recommend that awareness of structure, including specifically the recognition of isomorphisms, should be nurtured in children as part of the general development of expertise in constructing representational acts" (p. 5). In this RUanalytic, Brandon, a 10-year old fourth grader, shares his reasoning on how he relates his solution of The Pizza Problem (below) to his solution of The Towers Problem. The Pizza Problem: A local pizza shop has asked us to more...
The class is investigating the difference between 1/4 and 1/9. In initial discussions, some students agree with Meredith, who says that the difference is 1/5 because 9 – 4 = 5. Researcher Maher indicates to the class that if they apply Meredith’s rule to 1/2 and 1/4, they would get an answer of 1/2, challenging their earlier reasoning that produced an answer of 1/4. Some students build one model to show ninths and a second model (of a different length) to show fifths. For example, Alan more...
Extending the Doubling Conjecture
In the previous day’s session, students conjectured that, once they had a model for comparing the fractions 2/3 and 3/4, it was possible to build another model twice the size of that original model. In this session, Alan uses the doubling conjecture to build three models to compare 1/2 and 2/5. The first model uses one orange rod to represent 1; the second uses two orange rods to represent 1; the third model uses four orange rods to represent 1. Alan conjectures that adding four orange rods more...
Fourth Grade Students’ Generic Reasoning while Exploring Fraction Comparison Ideas
The purpose of this RUanalytic is to illustrate instances of generic reasoning that occurred as fourth graders, participating in a longitudinal study on student reasoning, explored fraction comparison concepts. According to Yankelewitz (2009), generic reasoning occurs when a student reasons about the properties of a paradigmatic example that are representative of and can be applied to a larger class of objects in which it is contained and lends insight into a more general truth about that more...
James Finds the Difference Between 1/4 and 1/9
The class is investigating the difference between 1/4 and 1/9. In initial discussions, some students agree with Meredith, who says that the difference is 1/5 because 9 - 4 = 5. Researcher Maher indicates to the class that if they apply Meredith’s rule to 1/2 and 1/4, they would get an answer of 1/2, challenging their earlier reasoning that produced an answer of 1/4. James offers a model consisting of 3 orange rods and a dark green rod (36 white rods) that can be partitioned into ninths and more...
David, Erik, and Meredith Use Reasoning to Resolve Conjectures
Meredith rebuilds the previous day’s models for comparing 2/3 and 3/4. The longer model is 24 cm long; a train of a blue rod, a black rod, and a brown rod, representing 1. In this model, a dark green rod represents 1/4, a brown rod represents 1/3, a red rod represents 1/12, and a white rod represents 1/24. Meredith shows that the difference between three greens and two browns is one red (1/12) or two whites (2/24). The other model is 12 cm long; it consists of an orange rod plus a red more...
Eight-Grade Students explore Surface Area and Volume Problems: The Role of Representations
The purpose of this RUanalytic is to examine how students use different representations to illustrate their developing understanding of the concepts of surface area and volume. The events chosen for the RUanalytic focus on the following categories of external representations: manipulative/physical, written symbols, experiential, spoken language and pictures and diagrams (Lesh, Post and Behr 1987). The video data for this RUanalytic come from a longitudinal study, from first grade to twelfth, more...
Comparing Models and Justifying the Choice of Unit
This RUanalytic is the third in a series of three RUanalytics that show students’ investigation of how to use the rods to compare 1/2 and 1/3. In the first RUanalytic, “Which is Larger, 1/2 or 1/3? An Introduction to Comparing Unit Fractions,” after establishing the candy bar metaphor, students examine the different rods, attempting to establish that one of them can serve as an appropriate unit, referred to as “1” or at times “the whole” or the “candy bar”, so that it is more...
Which is Larger, 1/2 or 1/3? An Introduction to Comparing Unit Fractions
The data for this RUanalytic were gathered on September 24th, 1993, during Session 3 of the fourth grade fraction intervention and the focus is on the students as they first begin specifically to investigate ways to compare fractions based on models constructed with the Cuisenaire rods (Steencken, 2001; Yankelewitz, 2009). This RUanalytic captures the beginning of several “visits” that the children have with the comparison task: Which is greater, 1/2 or 1/3, and by how much? This RUanalytic more...
Comparing 1/2 and 1/3: Confusion about the Unit
The data for this RUanalytic come from Sessions 5 (September 29th) and 6 (October 1st) of the fourth grade fraction intervention and continues the students’ investigation about which fraction is larger, 1/2 or 1/3 (Steenken, 2001; Yankelewitz, 2009). The particular focus is on the students’ reasoning as they propose, defend, and argue about precisely how much bigger 1/2 is than 1/3. This RUanalytic is the second in a series of three related RUanalytics. The first RUanalytic in the series more...
Extending Fraction Placements from Segments to Number Line: Obstacles and Their Resolutions
This RUanalytic focuses on a set of activities taken from a yearlong study designed to investigate how 4th grade students build fraction ideas (Schmeelk 2010). The activities related to comparing and ordering fractions have been partitioned into three analytics. The analytics preceding this one in the classroom investigations are entitled: (1) Imagining the Density of Fractions; and (2) Using Meredith’s Models to Reason about Comparing and Ordering Unit Fractions. These analytics focus on more...
Eleventh Graders Collaborating and Recognizing Isomorphisms in their Problem Solving
Initial Problem: A local pizza shop has asked us to help design a form to keep track of certain pizza choices. They offer a plain pizza that is cheese and tomato sauce. A customer can then select from the following toppings: pepper, sausage, mushrooms, and pepperoni. How many different choices for pizza does a customer have? List all the choices. Find a way to convince each other that you have accounted for all possible choices. Suppose a fifth topping, anchovies, were available. How many more...
The goal of this analytic is to show the remarkable power of student collaboration and teacher questioning by following the progression of one student throughout an open ended problem situation presented by researchers. The structure of the environment allows for multiple student interactions. These interactions allow the student, Matt, to move from a passive listener to a confident, active participant who is able to articulate his understanding to others. This progression would not have more...
Questions are an important part of learning and teaching; a form of communication to gain insight into students’ conceptual understanding (Roth, 1996). According to Wolff-Michael Roth (1996), “teacher questions are frequent, pervasive and [an] universal phenomena.” But although a classroom norm, its use to promote conceptual understanding amongst students is scarce. The misconception that frequent questioning brings about conceptual understanding is prevalent amongst both pre-service and more...
Imagining the Density of Fractions
This VMC Analytic focuses on a set of activities taken from a yearlong study designed to investigate how 4th grade students build fraction ideas (Schmeelk, 2010). The activities on this day of November 1, 1993 examine the placement of unit fractions on a number line segment between 0 and 1. This Analytic focuses on the November 1, 1993 session with fourth graders in a Colts Neck, New Jersey classroom as students are asked to extend their notions of fraction with rods as operator to the idea of more...
Developing Mathematical Precision in the Primary Grades
Learning to solve mathematical word problems is a complex endeavor, particularly in the primary grades when young students are simultaneously developing language proficiency to make sense of what the problems are asking to be solved. Word problems present the cognitive challenge of figuring out who is doing what, which numbers refer to which actions, actors or objects, and how to use the known number(s) to perform which mathematical operation to solve for the unknown. Sometimes manipulative more...
Discovering Probability with Dice Games and the Evolution of a Convincing Argument
Students can discover through collaboration the principles of theoretical and experimental probability. This analytic focuses on a group of sixth-grade students as they take a simple dice game and open a world of questions that they themselves end up finding the answers to. The game seems simple: Roll two dice. If the sum of the two is 2, 3, 4, 10, 11 or 12, Player A gets 1 point. If the sum is 5, 6, 7, 8 or 9, Player B gets 1 point. Continue rolling the dice. The first player to get 10 points more...
According to Davis (1984), children construct ideas by building on prior experiences. When students learn concepts in a meaningful way they construct "powerful representations" which can be used to solve new problems. The development of more advanced concepts is facilitated as students apply their previous knowledge and representations to understand new ideas. In a model which Davis terms an assimilation paradigm, learners assimilate the knowledge they have constructed from previous experiences more...
Questioning Elicits Reasoning and Representations for Combinatorics Tasks
This analytic contains 4 events. The purpose of this analytic is to assist teachers in acquiring pedagogical skill in supporting the development of students’ mathematical reasoning. More specifically, the analytic highlights researchers’ questioning to promote students’ engagement with new ideas, building models, and listening to input from other students. The analytic is also intended to answer the question: “In what ways do students respond to prompting and questioning?” The more...
Research has shown that, through argumentation, even young children can build proof-like forms of argument (Ball, 1993; Ball et al., 2002; Maher & Martino, 1996a, 1996b; Styliandes, 2006; 2007; Maher, 2009; Yankelewitz, 2009; Yankelewitz, Mueller, & Maher, 2010). The purpose of this VMCAnalytic is to illustrate events of a student involved in argumentation. The view of argumentation presented in this VMCAnalytic is consistent with Practice 3 of the Common Core Standards for Mathematical more...
Establishing norms and creating a mathematical community
This analytic describes the representations, reasoning, and justification used by students to express their understanding of fraction ideas while building solutions to a set of tasks. These tasks were introduced during the first session of a research intervention that was conducted over twenty-five sessions to study how students build fraction ideas prior to their introduction through the school’s curriculum. Of these sessions, seventeen were focused primarily on building basic fraction more...
Objective: This analytic can be used for professional development to provide both pre-service and in-service teachers with an opportunity to observe fourth grade students’ reasoning of fraction concepts where students are observed exhibiting some of the Common Core State Standards (CCSS) for Mathematical Practice. Main Description: This analytic provides viewers with the opportunity to observe a mathematics lesson where the instructor’s moves are used to facilitate more...
Research has shown that, through argumentation, even young children can build proof-like forms of argument (Ball, 1993; Ball et al., 2002; Maher, 2009; Maher & Martino, 1996a, 1996b; Styliandes, 2006; 2007; Yankelewitz, 2009; Yankelewitz, Mueller, & Maher, 2010). The purpose of this VMCAnalytic is to illustrate events of a student involved in argumentation. The view of argumentation presented in this VMCAnalytic is consistent with Practice 3 of the Common Core Standards for Mathematical more...
Collaborative Learning Groups Construct Viable Arguments and Critique the Reasoning of Others
This Analytic demonstrates enactments of Common Core Mathematical Practice 3: To construct viable arguments and critique the reasoning of others. There has been much research and documentation which supports the benefits of collaborative group work in the classroom versus the traditional teacher led and fed instruction that we have seen in the past. This teaching philosophy has an even stronger impact with the implementation of the new Common Core Mathematical Practices, particularly more...
Fourth Graders Reason by Cases as They Explore Fraction Ideas
This analytic explores the various forms of reasoning employed by students as they share their solutions for the following task: "I’m going to call the orange and light green together one... Can you find a rod that has the number name one half?" This task, which does not have a solution, prompted the students to use multiple forms of reasoning to justify their claims; some of which are highlighted in this analytic (Yankelewitz, Mueller, & Maher, 2010). In particular, several students used more...
Unitizing Area Numerically and Algebraically; The Gap Between Arithmetic and Algebra
In this analytic, Researcher Carolyn Maher employs a very useful and effective strategy to facilitate Stephanie’s learning. The idea of “reasoning down” involves analyzing by cycling back to previous experiences or knowledge (Driscoll 1999). Through questioning, Researcher Maher discovers that Stephanie’s confusion with the meaning of the square of (a+b) is due to her difficulty with the meaning of a^2. A possible reason for this struggle lies in the leap to algebra, a means of more...
Task Design Prompts Fourth Grade Students to Use Multiple Forms of Reasoning
This analytic demonstrates various forms of reasoning used by fourth grade students as they try to build a model with Cuisenaire rods to solve a fractions task for which there is no solution in the set. The events in this analytic are selected from a study of fourth grade students from Colts Neck, a suburban New Jersey district (Maher, Martino, & Davis, 1994). The session, facilitated by Researcher Carolyn Maher, took place in September of 1993, during the second session of a research more...
Fourth Graders Design a New Rod
This analytic describes the representations, reasoning, and justification used by students to express their understanding of fraction ideas while building solutions to a set of tasks. These tasks were introduced during the second session of a research intervention that was conducted over twenty-five sessions to study how students build fraction ideas prior to their introduction through the school’s curriculum. Of these sessions, seventeen were focused primarily on building basic fraction more...
Fourth Graders Explore the Magnitude of Fractions and Make Comparisons
This analytic reveals how task design and the revisiting of tasks that involve concrete models allow children to build deep understandings of fundamental concepts that often receive superficial treatment in standard curricula. In this case, children internalize the concepts of “common denominators” without using the term. At the end of an eleven-session unit on fraction comparison, the children evidence their intuitive grasp of the ways in which fractions can be compared. In the first part more...
Stephanie’s Journey with the Towers (Grades 3-8): A Metaphor for Making Connections
During this analytic, I hope to show that "learning is primarily metaphoric - we build representations for new ideas by taking representations of familiar ideas and modifying them as necessary, and the ideas we start with often come from the earliest years of our lives" (Davis, 1984, p. 313). Davis’ idea of teaching was centered on the idea that students should be provided with opportunities to build assimilation paradigms. According to him, assimilation paradigms were created when students more...
Teachers Promoting Mathematical Discourse: Fraction Explorations by Fourth Graders
Developing and promoting discourse in mathematics has become a larger focal point in the math classroom in recent years. Although research pointing to the value of students’ constructing their own arguments and collaborating with others has been around for decades, it has only recently become part of the mainstream teaching standards. The Common Core State Standards now have included the constructing of arguments and critiquing of others’ arguments as the third of their eight Standards more...
Student Perseverance in Discovering Patterns: Guess My Rule with Robert B. Davis
The Common Core State Standards for Mathematics (2010) has identified eight varieties of expertise as Standards for Practice that students need to develop during their discovery and learning of mathematics in order to become mathematically proficient. These standards include: •Make sense of problems and persevere in solving them. •Reason abstractly and quantitatively •Construct viable arguments and critique the reasoning of others •Model with mathematics •Use appropriate tools more...
Analysis on Student Collaboration and Comparing Fractions
There is much focus on the environment in which students undertake problem solving. When properly established, a collaborative setting can be a key factor in the growth and development of students’ ability to reason and construct arguments. Mathematically proficient students develop conjectures and construct arguments and in collaborative settings, propose these ideas to others and respond to the reasoning of others (NGACBP & CCSSO, 2010). Students should be able to differentiate between more...
Robert B. Davis Engages Students in Finding the Sum and Product Rule for Quadratic Equations
In a traditional math curriculum, the solving of quadratic equations is a topic for a first year algebra course, usually in the eighth or ninth grade. Solving quadratic equations typically follows other topics such as solving linear equations and factoring polynomials. Traditionally, the concept of solving quadratic equations is introduced through combining these two topics to find the solution(s). The purpose of this analytic is to illustrate a different approach to solving more...
Ariel Constructing Linear Equations for "Guess My Rule" and the "Ladder" Problems
This analytic portrays a seventh grade student, Ariel, from Frank J. Hubbard Middle School in Plainfield, New Jersey, who works on several problems involving linear functions. Ariel is one of a number of middle school students who participated in the Informal Mathematical Learning project (IML). IML was an after-school, 3-Year National Science Foundation-funded longitudinal study (Award REC-0309062) conducted by the Robert B. Davis Institute For Learning at Rutgers University. This analytic more...
Building Multiple Models Using Recursive Reasoning
Over the course of the fractions unit, students transitioned from building a single model to justify an answer to building multiple models to support their ideas and represent a single problem. Many students used recursive reasoning, basing the structure of one model on a previous model they had built. Some students progressed further in their reasoning, using the recursive methods to predict other models, as well as form generalization which would describe all the models of a specific type. In more...
Fourth Graders Analyses of Equivalence: 1/5 or 2/10?
Maher and Martino (1996) contend that when students are given sufficient time to work on a problem and are given the opportunity to discuss their solutions with their peers, they often express differences of opinion. These conflicts are not always resolved immediately; sometimes they are pushed off to a later class session, possibly being deferred over an extended period of time. This allows students to think about the problem and upon revisiting the identical or similar problem at a later more...
Pascal’s Triangle and Pascal’s Identity: Contextualizing and Decontextualizing
According to the Common Core State Standards, the ability to contextualize and the ability to decontextualize are important mathematical skills for students to develop. Learners should have "the ability to decontextualize--to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents--and the ability to contextualize, to pause as needed during the manipulation process in more...
Fourth graders build towards proportional reasoning
This analytic highlights students’ reasoning as they worked on five tasks which built towards the development of proportional reasoning. The events in this analytic are selected from a study of fourth grade students from Colts Neck, a suburban New Jersey district (Maher, Martino, & Davis, 1994). The three sessions depicted by this analytic were facilitated by Researchers Carolyn Maher and Amy Martino and took place consecutively in September of 1993 as part of a research intervention aimed to more...
The development of upper and lower bound arguments while comparing fractions
This analytic demonstrates the development and use of upper and lower bound arguments by fourth grade students as they worked on fraction comparison tasks using Cuisenaire rods to build models. The events in this analytic are selected from a study of fourth grade students from Colts Neck, a suburban New Jersey district (Maher, Martino, & Davis, 1994). The four sessions depicted by this analytic were facilitated by Researchers Carolyn Maher and Amy Martino and took place consecutively in October more...
Using Meredith’s models to reason about comparing and ordering unit fractions
This VMCAnalytic focuses on a set of activities taken from a yearlong study designed to investigate how 4th grade students build fraction ideas (Schmeelk 2010). The activities on this day were partitioned into two analytics: the first focusing on the placement of fractions on a line segment and the second focusing on placement of fractions on a number line. The first task that is shown in this first VMCAnalytic involves comparing and ordering unit fractions and placing them on a number line more...
Fourth graders’ argumentation about the density of fractions between 0 and 1
Research has shown that, through argumentation, even young children can build proof-like forms of argument (Maher & Martino, 1996a, 1996b; Styliandes, 2006; 2007; Ball, 1993; Ball et al., 2002; Maher, 2009; Maher & Martino, 1996; Yankelewitz, 2009; Yankelewitz, Mueller, & Maher, 2010). The purpose of this VMCAnalytic is to illustrate events of students involved in argumentation during which students are interacting with each other and a researcher. The view of argumentation presented in this more...
Tracing Ariel’s Algebraic Problem Solving: A Case Study of Cognitive and Language Growth
While research has shown that understanding the concept of a function is essential for success in other areas of mathematics (Carlson, 1998; Rasmussen, 2000) students continue to struggle learning the concept (Vinner and Dreyfus, 1989). Research has revealed that young children, who are engaged in problem-solving activities designed to elicit justifications for their solutions, develop an understanding of fundamental algebraic ideas such as function (Maher, Powell & Uptegrove 2010; Kieran, more...
Learning through Collaborative Argumentation
From Piaget's perspective, interaction with peers is an important aspect of cognitive development and knowledge construction (Palincsar, 1998). From a constructivist perspective interaction is vital because it is through interactions with others that a learner, has his/her existing mental representations challenged. Interactions with peers provide opportunities for students to reconsider their existing thoughts and beliefs. In some cases, this reconsideration leads to new knowledge construction more...
In his analysis of student-to-student discursive interactions solving a mathematical problem referred to as the Taxicab Problem, Powell (2006) posited the notion of a socially emergent cognition. Powell described this type of cognition as "a process through which ideas and ways of reasoning materialize from the discursive interactions of interlocutors that go beyond those already internalized by any individual interlocutor." With that in mind, the purpose of this analytic is twofold: 1) to more...
An Experiential Investigation of Algebraic Ideas Created and Implementedby Robert B. Davis
Objective: To demonstrate instances of experiential learning of 6th grade students with Professor Robert Davis as the facilitator. Students first solve single order equations and then build on their learning to solve and justify the solutions of quadratic equations. Solving second order equations is generally an 8th or 9th grade strand, but through their own reflections and without intervention by the facilitator, students are able to understand the "secret" behind their solution. more...
Stephanie Uses Geometry To Explain Binomial Expansion
Researcher Carolyn Maher conducted interviews with math student Stephanie during her eighth grade year, exploring ideas about binomial expansion. Stephanie was also one of a group of children who participated in a longitudinal research study, doing math activities facilitated by the research team since first grade. Clips from these earlier years as well as the entire set of interviews are available for viewing on the Video Mosaic Collaborative (videomosaic.org). Researcher Maher met with more...
From Taxicabs to Towers: An Analysis of Problem-Solving Strategies
Problem solving is a cornerstone to the mathematical learning experience that makes possible students' application of creative strategies and logical reasoning while working to complete particular tasks. This analytic is a detailed overview of various problem-solving strategies employed by four twelfth-grade students - Brian, Jeff, Michael, and Romina - when solving the Taxicab Problem, a challenging mathematical task involving combinatorial reasoning and ideas from coordinate geometry. Each more...
Developing Isomorphic Relationships in High School Mathematics
The fundamental concept of isomorphisms is often not formally introduced to students until more advanced, college-level mathematics courses such as calculus or real number analysis. However, this delayed presentation should not lead mathematics educators to assume that students are unable to build an understanding of the idea as they construct these isomorphic relationships earlier in their mathematical explorations. This analytic presents four eleventh-grade students - Amy Lynn, Robert, more...
Using video to teach about transfer: The case of Brandon
For many years, I used Brandon to teach about analogical transfer in a course in Educational Psychology and colleague Sharon Derry at University of Wisconsin used this in a course in the learning sciences as part of a hybrid problem-based learning course organized around video. After students worked on the tower and pizza problems themselves, they watched the Brandon video and were asked to solve the following problem as part of the STELLAR project: Knowing What Brandon Knows As a teacher, more...
Beginning Ordering and Comparing (Clip1) -- In this clip the researcher begins by posing the question of, "which fraction is bigger?" She puts 1/2 , 1/3,1/4, and 1/5 on the board and asks the students to be able to prove which is bigger. Notice how David, without the rods, draws rods to illustrate which is bigger. Then in an attempt to move the students from a rod model to a number line, the researcher puts up a number line segment from 0 to 1 and then asks the students to place those same more...
This is an after-school session in which Jeff, Michael, Romina, and Brian volunteer to participate. This particular session is called the Night Session because it took place on an evening late in their junior year. These students have been working on many combinatorics problems since second grade, some of which are isomorphic to each other. In this session, they were discussing the meaning of combinatorial notation and discussing the addition rule of Pascal’s Identity in terms of that more...
Building towers selecting from two colors--engaging two students in collaborative problem solving
Mediator/researcher Carolyn Maher of Rutgers University models effectively engaging two students to solve the problem of building towers four high selecting from cubes of two colors, moving from one student to two students to three students and then preparing for demonstration to the class. Carolyn uses questions, eye contact and participation in the problem solving to engage both students in convincing her and each other that "times two" is the answer to the more...
My teacher's going to kill me: students collaborate to solve the pizza problem
Students bring forms of reasoning--guessing and checking, referencing a previous problem and recognizing a pattern, as well as previous knowledge (factorials, combination) and the calculator to the problem of how many possible combinations result from four or five pizza toppings. Students Stephanie and Michelle reinforce and support each other during the collaboration. "My teacher's going to kill me 'cause she knows I can do this." "She's never going to see more...